393 research outputs found

    ElegantSeg: End-to-End Holistic Learning for Extra-Large Image Semantic Segmentation

    Full text link
    This paper presents a new paradigm for Extra-large image semantic Segmentation, called ElegantSeg, that capably processes holistic extra-large image semantic segmentation (ELISS). The extremely large sizes of extra-large images (ELIs) tend to cause GPU memory exhaustion. To tackle this issue, prevailing works either follow the global-local fusion pipeline or conduct the multi-stage refinement. These methods can only process limited information at one time, and they are not able to thoroughly exploit the abundant information in ELIs. Unlike previous methods, ElegantSeg can elegantly process holistic ELISS by extending the tensor storage from GPU memory to host memory. To the best of our knowledge, it is the first time that ELISS can be performed holistically. Besides, ElegantSeg is specifically designed with three modules to utilize the characteristics of ELIs, including the multiple large kernel module for developing long-range dependency, the efficient class relation module for building holistic contextual relationships, and the boundary-aware enhancement module for obtaining complete object boundaries. ElegantSeg outperforms previous state-of-the-art on two typical ELISS datasets. We hope that ElegantSeg can open a new perspective for ELISS. The code and models will be made publicly available

    Experimental determination of added resistance due to barnacle fouling on ships by using 3D printed barnacles

    Get PDF
    3D printed artificial barnacles were attached on flat plates and towed over a range of Reynolds numbers in order to be able to calculate added resistance and power requirements of ships due to calcareous fouling. Since barnacle fouling occurs naturally it is possible to observe the barnacles in different sizes on any randomly selected ship surface. To model this condition three different barnacle sizes were selected and used to represent growing stages of the attached barnacles. The flat plates were covered with barnacles within a range of 10% to 50% area coverage respectively and towed over different speeds at the Kelvin Hydrodynamics Laboratory in the University of Strathclyde. Frictional resistance coefficients and roughness function values were then calculated for each surface based on experimental results. Roughness effects of the given fouling conditions on the frictional resistances were then predicted for a bulk carrier ship using an in-house code developed based on boundary layer similarity law analysis. Added resistance diagrams were plotted using these predictions. Finally, the increase in the frictional resistance and powering penalties of the ship were predicted using the generated diagrams

    Multi-band asymmetric piezoelectric MEMS microphone inspired by the Ormia Ochracea

    Get PDF
    A multi-band piezoelectric directional MEMS microphone is demonstrated based on a bio-mimetic design inspired by the parasitoid fly Ormia ochracea, using the PiezoMUMPs multi-user foundry process. The device achieves a directional sound field response within four frequency bands, all lying below 15 kHz. It acts as a pressure gradient microphone with hyper-cardioid polar patterns in all frequency bands, with the measured mechanical sensitivity being in good agreement with acoustic-structural simulations conducted in COMSOL Multiphysics. The maximum experimentally measured acoustic sensitivity of the device is 19.7 mV/Pa, located at a frequency of 7972 Hz and sound incidence normal to the microphone membrane

    DEMO : multimodal sensing system for hearing enhancement and research

    Get PDF
    Directivity in hearing aid systems is normally achieved with the use of multiple microphones in an array fashion that aims to enhance signal processing capabilities and performance. Despite the use of binaural information (hearing with two ears), natural hearing systems (e.g. human) also rely on movements of the head to retrieve directional information and the origin of sounds [1]. This kind of natural sensing technique, which combines sound with the movements and position of the body (Fig. 1 & 2) has previously been investigated, and showed encouraging results with improved localization performance [2]. However, the concept has not been explored or exploited yet in any standard commercial hearing aid devices. Creating a hearing aid system that can also include motion sensing would be of great benefit to the hearing impaired in order to enhance directional perception of sound with other functionalities such as frequency selectivity (Fig. 3 & 4) on a wearable hearing device

    Dynamic characteristics and optimal design of the manipulator for automatic tool changer

    Get PDF
    In order to improve the reliability of changing tool for ATC (automatic tool changer), a horizontal tool changer of machining center is chosen as the example to study the dynamic characteristics in the condition of changing a heavy tool. This paper analyzes the structure and properties of the tool changer by simulation and experiment, and the space trajectory equations of the manipulator and tool are derived. The maximum force is calculated in the processing of changing tool. A virtual platform for the automatic tool changer is built to simulate and verify the dynamic performance of the tool changer; the simulation results show an obvious vibration in the process of changing tool, which increases the probability of failure for changing tool. Moreover, in order to find out the device's vibration reasons, a professional experiment platform is built to test the dynamic characteristics. Based on the testing results for a horizontal tool changer, it is known that the unstable vibration is mainly caused by the collision of the tool. Finally, an optimization method for the manipulator is proposed to reduce this vibration and improve the reliability of the tool changer. The final simulation and experiment results show that the optimized manipulator can grasp the heavy tool stably, and the vibration amplitude is significantly reduced in the process of changing tool

    Identification of Three (Iso)flavonoid Glucosyltransferases From Pueraria lobata

    Get PDF
    (Iso)flavonoids are one of the largest groups of natural phenolic products conferring great value to the health of plants and humans. Pueraria lobata, a legume, has long been used in Chinese traditional medicine. (Iso)flavonoids mainly present as glycosyl-conjugates and accumulate in P. lobata roots. However, the molecular mechanism underlying the glycosylation processes in (iso)flavonoid biosynthesis are not fully understood. In the current study, three novel UDP-glycosyltransferases (PlUGT4, PlUGT15, and PlUGT57) were identified in P. lobata from RNA-seq data. Biochemical assays of these three recombinant PlUGTs showed all of them were able to glycosylate isoflavones (genistein and daidzein) at the 7-hydroxyl position in vitro. In comparison with the strict substrate specificity for PlUGT15 and PlUGT57, PlUGT4 displayed utilization of a broad range of sugar acceptors. Particularly, PlUGT15 exhibited a much higher catalytic efficiency toward isoflavones (genistein and daidzein) than any other identified 7-O-UGT from P. lobata. Moreover, the transcriptional expression patterns of these PlUGTs correlated with the accumulation of isoflavone glucosides in MeJA-treated P. lobata, suggesting their possible in vivo roles in the glycosylation process

    Influence of microphone housing on the directional response of piezoelectric mems microphones inspired by Ormia ochracea

    Get PDF
    The influence of custom microphone housings on the acoustic directionality and frequency response of a multiband bio-inspired MEMS microphone is presented. The 3.2 mm by 1.7 mm piezoelectric MEMS microphone, fabricated by a cost-effective multi-user process, has four frequency bands of operation below 10 kHz, with a desired first-order directionality for all four bands. 7×7×2.5 mm3 3-D-printed bespoke housings with varying acoustic access to the backside of the microphone membrane are investigated through simulation and experiment with respect to their influence on the directionality and frequency response to sound stimulus. Results show a clear link between directionality and acoustic access to the back cavity of the microphone. Furthermore, there was a change in direction of the first-order directionality with reduced height in this back cavity acoustic access. The required configuration for creating an identical directionality for all four frequency bands is investigated along with the influence of reducing the symmetry of the acoustic back cavity access. This paper highlights the overall requirement of considering housing geometries and their influence on acoustic behavior for bio-inspired directional microphones
    • …
    corecore